Strong equilibrium in network congestion games: increasing versus decreasing costs

نویسندگان

  • Ron Holzman
  • Dov Monderer
چکیده

A network congestion game is played on a directed, two-terminal network. Every player chooses a route from his origin to his destination. The cost of a route is the sum of the costs of the arcs on it. The arc cost is a function of the number of players who use it. Rosenthal proved that such a game always has a Nash equilibrium in pure strategies. Here we pursue a systematic study of the classes of networks for which a strong equilibrium is guaranteed to exist, under two opposite monotonicity assumptions on the arc cost functions. Our main results are: (a) If costs are increasing, strong equilibrium is guaranteed on extension-parallel networks, regardless of whether the players’ origins and destinations are the same or may differ. (b) If costs are decreasing, and the players have the same origin but possibly different destinations, strong equilibrium is guaranteed on series-parallel networks. (c) If costs are decreasing, and both origins and destinations may differ, strong equilibrium is guaranteed on multiextension-parallel networks. In each case, the network condition is not only sufficient but also necessary in order to guarantee strong equilibrium. These results extend and improve earlier ones by Holzman and Law-Yone in the increasing case, and by Epstein et al. in the decreasing case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong and Correlated Strong Equilibria in Monotone Congestion Games

The study of congestion games is central to the interplay between computer science and game theory. However, most work in this context does not deal with possible deviations by coalitions of players, a significant issue one may wish to consider. In order to deal with this issue we study the existence of strong and correlated strong equilibria in monotone congestion games. Our study of strong eq...

متن کامل

The Price of Anarchy is Unbounded for Congestion Games with Superpolynomial Latency Costs

We consider non-cooperative unsplittable congestion games where players share resources, and each player’s strategy is pure and consists of a subset of the resources on which it applies a fixed weight. Such games represent unsplittable routing flow games and also job allocation games. The congestion of a resource is the sum of the weights of the players that use it and the player’s cost functio...

متن کامل

Cascading to Equilibrium: Hydraulic Computation of Equilibria in Resource Selection Games

Drawing intuition from a (physical) hydraulic system, we present a novel framework, constructively showing the existence of a strong Nash equilibrium in resource selection games (i.e., asymmetric singleton congestion games) with nonatomic players, the coincidence of strong equilibria and Nash equilibria in such games, and the uniqueness of the cost of each given resource across all Nash equilib...

متن کامل

CASCADING TO EQUILIBRIUM: HYDRAULIC COMPUTATION OF EQUILIBRIA IN RESOURCE SELECTION GAMES By

Drawing intuition from a (physical) hydraulic system, we present a novel framework, constructively showing the existence of a strong Nash equilibrium in resource selection games with nonatomic players, the coincidence of strong equilibria and Nash equilibria in such games, and the invariance of the cost of each given resource across all Nash equilibria. Our proofs allow for explicit calculation...

متن کامل

Absence of Pure Nash Equilibria in a class of Co-ordination Games

We prove that for a certain class of co-ordination games with increasing payoffs for co-ordination there are not necessarily pure Nash equilibria. This is achieved by introducing a particular model for the payoffs. This result is in contrast to the congestion game with decreasing payoff. We discuss a generalization of the model introduced which is of independent interest.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Game Theory

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2015